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A solution to the hypersonic small disturbance equations is obtained for a class 
of two-dimensional bodies supporting logarithmic shock waves by reducing the 
partial differential equation to an ordinary differential equation. The body shape 
is calculated and shown not to be logarithmic if y + 1, where y is the ratio of the 
specific heats of the gas. 

1. Introduction 
It is well-known that under certain circumstances, partial differential equations 

may be reduced to ordinary differential equations, and the solutions so obtained 
are referred to as similarity solutions. Similarity solutions have been studied in 
many parts of gas dynamics including unsteady one-dimensional flow and steady 
hypersonic flow past slender bodies. In fact the equations of motion are the same 
in both cases. A detailed study has been made by Sedov (1959) for the case of 
power law shocks for which it is shown that similarity solutions exist when the 
pressure in the undisturbed stream is neglected. This was reviewed by Mirels 
(1962) with an emphasis on hypersonic flow over slender bodies. In Sedov’s 
(1959) book, it is also indicated that a limiting case of similar flow fields with 
power law shock is the flow field formed with an exponential shock wave. For 
the case of two-dimensional hypersonic flow, such a special solution is studied by 
Cole & Aroesty (1970) using a different approach. 

In this paper the equations describing hypersonic flow past a slender body are 
investigated and a single partial differential equation is derived. It is then shown 
that for a class of two-dimensional bodies supporting logarithmic shock waves 
this partial differential equation is reduced to an ordinary differential equation 
for which the solution is found. The body shape is calculated and shown not to 
be logarithmic if y + 1. The solution is applied to hypersonic aerofoil calculation 
and the shape of the optimum aerofoils of this class is determined. 

2. Formulation of the problem 
To study hypersonic flow past two-dimensional or axisymmetric slender bodies, 

physical quantities are denoted with a bar, thus (Em+@), ij are velocity com- 
ponents in the 2 and P directions (for two-dimensional flow, F is simply y), jj 
and p )  the pressure and density, respectively. 

Let E be a measure of the slenderness of the body. Non-dimensional quantities 
are introduced as follows x = 5, r = F/e, (1) 
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( 2 )  1 u = 5/5,€2, v := ;i?/5,€, 

P = P/yF, M%e2, p == PIP,, 
where y is the ratio of specific heats, M the M:ach number and the subscript 00 

refers to free stream. These non-dimensional quantities are assumed to be of 
order unity in the flow region which is of interest and when terms of order €2 

are neglected, we obtain the following hypersonic small disturbance equations? 

px + (pv)r + VPV, '~ = 0, 

vx + vvr +pJ/g = 0, 

( P / P ~ ) ~ + ~ ( P / P ' ) ~  = 0, 

with v = 0 for two-dimensional flow and v = 1 for axisymmetric flow. 
Introducing a stream function @ such that 

= prr, @x = -pvr', 

equation ( 3 )  is automatically satisfied while equation ( 5 )  becomes 

P = w f @ ) P .  

Using ( 6 )  and (7), equation (4) can be written as$ 

When r is considered as a function of x and 9, the last equation becomes 

The derivatives of r are related to the flow quantities by 

rx = v, r+ = l/pr'. 

The direct problem of finding the flow field and the bow shock, from (S), for 
a given body is difficult and we shall treat only the indirect problem, i.e. for a 
given bow shock we seek, from (9), a flow field and a body which supports the 
given shock. In  this case the function w ( $ )  can be written explicitly in terms of 
the shock. Thus if the shock is given by 

r = R(x)  ( 1 1 )  

and if the pressure in the free stream is neglected, we have, from the Rankine- 
Hugoniot conditions, 

w = W o @ ,  (12) 

where 

In (13 ) ,  E l  denotes the inverse function of R. 

t Subscripts x and r represent partial differentiation. 
$ A prime denotes total derivative. 
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The structure of the function w(* )  suggests the following transformation 

(14) 
1 * = cgIR(5111+". 

The new variable 6 defined in (14) is just the x location of a streamline where it 
crosses the shock (see figure l), thus at  the shock, 6 = x, and for the region behind 
the shock, 5 < x. For the special case g = 0,  this transformation was used by 
Cole & Aroesty (1970) in a recent paper. 

r 

M ,  * I - 
X 0 5 

FIQURE 1. System of co-ordinates. 

Transformation (14) simplifies the expression for w and we have 

0 = woR'2((), 
hence equation (9) becomes 

for which two boundary values at  the shock, i.e. r ( x , x )  and either r s (x ,x )  or 
rx(x,  x), must be prescribed in order to determine a unique solution. 

(17) 
In passing we notice that 

r " r p % )  R'(5) = llro 
and this expression must always be positive. 

It can be shown that solutions of (16) exist in the form r = R(x)f [r (E,x) ] .  
Indeed, this leads to the well-known power law similarity solutions and its 
limiting case - flow with an exponential bow shock. These will not be repeated 
here. 

3. Method of solution 
In  this section we shall restrict our discussion to the case g = 0, i.e. two- 

dimensional hypersonic flow past a slender body. Solutions to (16) will be sought 
in the form r = R ( 4  -f[r('L XI1 (18) 
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and it will be shown that (16) is reduced to an ordinary differential equation for 
f (v), provided certain conditions are satisfied. 

First, the conditions imposed on 7 and f are that 7 must be a constant along 
the shock, i.e. 

7 ( z , x )  = 1 (19) 

and f ( 1 )  = 0.. 
For the case CT = 0, (1  6) becomes 

Using (18) we have 

For this expression to be a function of 7 only, a condition on 7 is 

75 = --X’(EJ G ( r )  

and thus rs/R’(g-) = f’G. 
Equation (21) then becomes 

The conditions required for (24) to become :tn ordinary differential equation 
are thus 

R”(<)/Rt2([)  = const. = -P, 
R”(Z)/R’~(~) = a function of 7 only (26) 

and r z  = R ’ ( t ) m ) *  (27) 

The special case p = 0 corresponds to flow past a wedge and need not be 
discussed here. For p + 0 the solution of ( 2 5 )  is 

where A is a constant and AP > 0. In  deriving (28) the condition that the shock 
passes through the origin, i.e. R(0) = 0, has been used. Thus the shock wave must 
be logarithmic. 

With this shock wave given, the conditions (22), (26) and (27) will all be 
satisfied for 

and, after introducing h(7) = Pf’(7)? ( 30) 

(24) becomes a first-order equation in h 
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with the boundary condition at shock 

which is obtained by combining (23), (29), (30) and (17). 
After h(q) is found from (31), the flow quantities can be obtained from 

I P = V?h(7)> 
w = R’(x) ( 1  - l/p), 

p = W , R ’ 2 ( 5 ) p y ,  

and in particular, the body surface, given by ( = 0, is 

(33) 

It is easily seen from (34) that for y + 1 the body which supports a logarithmic 
bow shock is itself not logarithmic,? since this would require that h N l /q which 
is nevertheless not a solution of (31) when y + 1. The case y = 1 will be discussed 
later. 

Scaling the body surface by the normalization condition 

rb( l )  = 1 (35) 

relates the two parameters P and A by 

Hence the profile of the body surface is a family of curves of one parameter. 
In  the limiting case IAI +- 00 we have 

AP-t 2/ (y+ 1), as IAI + m, (37) 

and the body surface becomes a flat plate as seen from (34). 

case y-+ 1, the solution to (31) which satisfies the boundary condition (32) is 
It is clear that everything depends on the solution of (31). For the limiting 

h = 0. (38) 

This, according to (33) and (34), gives an infinite density and a logarithmic body 
surface coincident with the shock. These conclusions are of course all consistent 
with the concept of Newtonian flow. 

In  the general case y + 1, and (31) must be solved numerically. It should be 
noted that h. is independent of the parameter /3 or A ,  but dependent only on y .  
Hence h is a universal function for all bodies and can be computed once y is 
given. 

For concave shocks and thus concave body shapes, /? < 0, A < 0 and q < 1 
in the region behind the shock. Evidently, for a given value of A < 0, these 
solutions exist only in the region 

O < x < - A .  (39) 

t As the body and the shock wave are not similar in shape, this particular type of solution 
is not referred to as a similar solution. 
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As x -+ - A ,  the slopes of the shock and the body surface, as seen from (28) and 
(34), tend to infinity, and the basic assumptJons in the hypersonic small dis- 
turbance theory break down. Therefore for concave shapes, (31) must be solved 
in the range 

As 7 --f 0, the asymptotic behaviour of h is obtained from (31) as follows 
0 < 7 < 1 .  (40) 

7 
FIGURE 2. The universal function h(i7) (see equation (31)). 

Since for a given value of ,4 < 0, the solution SO obtained only exists over the 
body surface from x = 0 up to x = - A ,  if - A  < 1 the normalization condition 
(35) must be replaced by a slightly different one, e.g. ra( - &A) = 1. 

For convex shocks and thus convex body shapes, the situation is different. 
In  this case, /3 > 0, A > 0 and 7 > 1 in the region behind the shock. Equation (31) 
then shows clearly that the integral curve (figure 2 )  can only be continued from 
q = 1 to 7 = ye where qc is the q co-ordinate of the point C where the integral 
curve meets the curve r defined by 

r : y ~ - l h ~ + l  - ywo := 0. (42) 

The integral curve turns around at the point C!. Thus the line 7 = vC represents 
a limit line of the flow field, and that part of the integral curve (shown by a broken 
line in figure 2 )  above the limit point C must be rejected on physical ground. 
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The local behaviour of the integral curve at  point C(q,, h,) can be investigated 
using (31). Thus putting 

(31) becomes, for small values of 7" and h*, 
7" = y-v,, h" = h-h,, (43) 

(44) av*iah* = - av* - bh*, 

where 

and the local behaviour of the integral curve near C is found as follows 

which shows clearly that it turns around at the limit point C. As 7 + qc, dhldy --f m 
and hence, from (33), (av/ax)5=0+co, therefore the curvature of the body is 
infinite at  C. 

From these discussions, it is clear that, in the case of convex shapes, for the 
solution to exist up to the point EL: = 1, the condition on A is 

(47 1 
and if A is less than 1/(rlc- 1), the solution cannot exist up to x = 1. However, 
the solution so obtained still makes sense and represents flow over the front part 
of the body up to the limiting point x = A (yc - 1) with a slightly different normal- 
ization condition from (35). 

The universal function h(v) has been computed from (31) in both cases of 
concave shapes and convex shapes. The results are shown in figure 2 for various 
values of y. Some typical body shapes supporting logarithmic shock waves are 
given in figures 3 and 4. 

7 - yc = - +b(h - he)', (46) 

A > l/(sc- 1) 

4. Hypersonic airfoils supporting logarithmic shock waves 
The shape of body surface found in $ 3  can be used as the lower surface of a 

hypersonic airfoil at  small incidence. For such an airfoil the pressure distribution 
pb(x) on the lower surface is given by 

while that on the upper surface is assumed zero. Within the assumption of an 
inviscid fluid, the lift L and drag D, and the coefficients CL and C,, of the airfoil 
can be obtained as follows 

Evidently C&&, is independent of 8 and is a function of the parameter A .  
The problem of determining the shape of an airfoil which produces a minimum 
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FIGURE 3. Optimum shape of airfoil supporting a logarithmic shock 
y = 1.4, A = - 3-33, C ~ / C ! D  = 1.58. 
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FIGURE 4. A typical convex hypersonic airfoil supporting a logarithmic 
shock y = 1.4, A = 4.0, G ~ / C D  = 1.48. 
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drag for a given lift can thus be studied in terms of this parameter by maximizing 
the quantity Ct/C,. In  figure 5 the curves of CtlC, versus 1/A are plotted for 

1.0 
-1.0 -0.8 -0.6 - 0 4  -0.2 0 0.2 

1 / A  

FIGURE 5. CLjC, as a function of 1/A. 

various values of y. It is seen from this figure that for a given lift an airfoil of this 
type has slightly lower drag than a flat plate, for which 

1/A = 0 and Cf,/C, = (y+  1)t. 

It is also seen that with decreasing y, the improvement in performance of such 
an airfoil over a flat plate is increasing. For y = 1.4, the optimum shape of airfoils 
of this type which gives a maximum C&C, is plotted in figure 3. 

This paper was presented at  the Euromech 20 conference on Aerodynamics of 
Hypersonic Lifting Vehicles at the University of Cambridge, in July 1970. 
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